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ABSTRACT

For many astrophysical situations, such as in solar flares or cosmic gamma-
ray bursts, continuum’ gamma rays with energies up to hundreds of MeV have been
observed, and can be interpreted to be due to bremsstrahlung radiation by relativistic
electrons. The region of acceleration for these particles is not necessarily the same
as the region in which the radiation is produced, and the effects of the transport of
the electrons must be included in the general problem. Hence it is necessary to solve
the kinetic equation for relativistic electrons, including all the interactions and loss
mechanisms relevant at such energies. The resulting kinetic equation for non-thermal
electrons, including the effects of Coulomb collisions and losses due to synchrotron
emission, has been solved analytically in some simple limiting cases, and numerically
for the general cases including constant and varying background plasma density and
magnetic field. New approximate analytic solutions are presented for collision dominated
cases, for small pitch angles and all energies, synchrotron dominated @oth steady-
state and time dependent, for all pitch angles and energies, and for cases when both
synchrotron and collisional energy losses are important, but for relativistic electrons.
These analytic solutions are compared to the full numerical results in the proper limits.
These results will be useful for calculation of spectra and angular distribution of the
radiation (X-rays, v-rays and microwaves) emitted via synchrotron or bremsstrah-
lung processes by the electrons. We shall examine these properties and their relevance
to observations in subsequent papers.

Subject headings: plasma-radiation mechanisms-Sun:flares-Sun:X-rays—X-rays:bursts



I. Introduction

In many astrophysical situations the observed electromagnetic radiation is produced
by accelerated electrons with non-thermal or non-maxwellia.nﬁdistributions (typically
with power law energy spectra and anisotropic momentum distributions). Interaction
of these electrons with ambient plasma generally with varied particle, photon and
magnetic field densities produces the observed radiation through synchrortron, compton
or bremsstrahlung processes. In general the acceleration site, normally a region of
low density, high plasma turbulence or electric field, can be different than the region
where the bulk of the radiation is produced. The distribution of pavrticles derived from
modeling of the emission process is not necessarily that of the accelerated particles but
is modified during the transport from one region to another. The two distributions are
related by the particle kinetic equation. It is imperative then to understand the effects
of transport in order to determine the distribution of the accelerated particles and to
gain insight into the acceleration mechanism.

In most analyses of non-thermal sources the transport effects are either ignored
or treated in an approximate manner primarily because of the complexity of the
problem. Many interactions with the ambient plasma such as Coulomb collisions,
inverse Compton scattering, Synchrotron cooling and interaction with both small scale
electromagnetic field fluctuations (plasma waves) and large scale electric and magnetic
fields can be simultaneously be important. Some simplfied cases have been analyzed.
For example, in recent studies the synchrotron effects were considered by Lamb and
Brainerd (1987), Coulomb collision effects by Leach and Petrosian (1981, hereafter LP)
and Petrosian (1983), and synchrotron and magnetic field effects by Ho (1986) and
MacKinnon and Brown (1988), In this paper we consider the effects of all three of these
processes. In subsequent papers we shall apply the results from this study to microwave,
X-ray and y-ray production in solar flares, and X-ray to v-ray production in gamma ray
bursts.

We use the Fokker-Planck method for solution of the kinetic equation and

determination of the distribution f(Z,7,t) in phase space. Because of the presence of



strong fields in general the particle drift across field lines is neglegible so that only the

spatial coordinate s, the distance along the field line, and two components of momentum

(parallel and perpendicular to the field lines) are needed. In most cases discussed

below we replace tlie two momenta with the kinetic energy E and u = cosa where

a is the particle pitch angle. We shall also consider the steady state case which is a

good approximation when the time scale of the modulation of the observed radiation

is longer than the typical time scales of the transport processes. Thus we solve the

kinetic equation for the distribution f(E, u,s), where f dEduds is the number density

of particles. We utilize the Fokker-Planck treatment of the collisional effects and neglect

the inverse Compton effects (which are in many ways similar to synchrotron effects), the

effects of electric fields, plasma turbulence and self-absorption of synchrotron radiation.
The fully relativistic equation including collisional and synchrotron effects as well as

the effects of the field inhomogeneities can then be written as

wZ2 DRB D (0 )e) = g [(C+ 5870 - ) @]
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where & = f/B8, v = E + 1 is the total energy, fc = c\/l_—l—/'y-f is the electron velocity,
B is the magnetic field strength and I is a source term for the injected electrons.
[See, e.g., LP, Leach (1984), Petrosian (1985) and McTiernan (1989). Note that the
convergence term is different here than in the equations in LP and Leach (1984), with
the factor of (1 — u?) being inside the derivative 3/9u. This results in differences of less
than 5% in comparison with the earlier results.]

The steps leading to equation (1) and the definition of the collisional energy loss
and diffusion coefficients C and C' = £C, and the synchrotron coefficient S are given in

LP and Petrosian (1985). For a background plasma of fully ionized hydrogen, { =1 and

C =4rrinlnA =2x10"1 (lnA) ( i ) ecm™! (2)
20 101%m™3
where r, = €2/m.c? is the classical electron radius, n is the ambient proton or

electron density, and In A is the coulomb logarithm. This simple relation is not true for



a partiall& ionized plasma or a neutral gas. In these cases the ratio £ depends on the
energy; e.g., for a neutral background ¢ varies from ~ 1/12 to ~ 1/8 for energies from
10 keV to 10 MeV.

The synchrotron ;energy loss and pitch angle change terms are proportional to

27'2 B2 -16 B 2 -1
S = 3 (mccz) =6.5x10 (m) cm . (3)

The coefficients S, C, and C' have the units of inverse length and are useful scales. We
will find it convenient to define the ratios R, = S/C (R, = 3230 B%/n for In A = 20),

and

R=F+*(1-4u")R, . (4)

as a measure of relative importance of the synchrotron and collisional energy losses (see
Table 1).

For the source term ¥ we shall assume that the electrons are injected at one point,
the origin of the spatial coordinate s = 0, so that £ o é(s) is zero everywhere
except at s = 0. Consequently we solve the equation with £ = 0 and use the injected
distribution as a boundary condition. Furthermore, we will present the results in terms
of the particle flux integrated over the cross-sectional area of the loop A, given by
F = BcfA = %c®A, which has units of s"'keV~!ster~!. The source, or the boundary

condition at s = 0, is assumed to have the form
F(E,u,s = 0) = F,(E)G(p) = 20;2F,(E)e~(@"-aD/aC | (5)

Here a? is the dispersion in pitch angle and «; is the peak direction. For lower values
of a; and a, the distribution becomes beamed along the field lines. For a; = 7/2 and
small a, the distribution will be of pancake form. In some cases we shall replace a® with
sina = (1 — p?), and when necessary we shall assume a power law energy spectrum
given by;

F,(E)=KE™*. (6)

In the next section we discuss some analytic solutions for equation (1). In Section

II1 we describe the results from numerical solutions of this equation for a variety of



injected ﬁitch angle distributions and field configurations. A brief summary is presented

in Section IV.

II. Analytic solutions

In some limiting cases, we find that analytic solutions are possible. The analytic
solutions are useful in many ways. They can give good quantitative estimates within
their domain of applicability; they can be used to test the accuracy of the complex
numerical results, and they provide a qualitative guide for more complicated cases

outside the range of applicability.

A. Collision dominated solutions (R < 1)

For high densities and low values of the field strength and electron energy, the

electron transport is dominated by Coulomb collisions and we can set S = 0. As shown

by LP analytic solutions are then possible for small pitch angles. If a? <« 1, the injected

electrons are strongly beamed along the field lines and we can set 4 = (1 — a?/2) and

(1 — u?) = o in equation (1). If we ignore the O(a?) terms, and define a normalized

collisional column depth 7. and energy parameter n by
dr. = Cds , dn = B*dE

then the flux at any depth is given by equation (18) of LP:

BIE] )’ 9e=a/e?
F(E,u,1.)= F,[E(n+71.) .
( I“ TC) (ﬂ[E(fl + Tc)] ag 4] [ ('7 T )]
The pitch angle distribution is gaussian at all . with a dispersion a. given by

012: = ag + C(E’TC) )

where

o [Blotr) . 2+E(m)
((B,7) =26 | ELS < rr)

From equation (7) we have n = E?/(E + 1) so that

E(x)=§(1+\/1+%> .

(7)

(8)

(9)

(10)

(11)



Thus E(n) = E and [8(z))? =1 —1/(z + 1)? relates the velocity 8 to energy.

1) Non-relativistic limit. For non-relativistic particles E « 1 and n = E?. For
r. < 1, which will be the case for these particles because they lose most of their energy

by 7. ~n ~ E?,

E(n+r)=E\/1+1/E?

and
C(E, T) =§1n(1+'rc/E2) . (12)

As shown by LP this solution is a good approximation up to very large values of 7./ E?
and for injected pitch angle distributions with values of a2 up to 0.40; much larger than

expected considering the assumptions made.

2) Relativistic limit. For the extreme relativistic (E *» 1) electrons we have n = E
and E(n + 7.) = E + .. The diffusion in pitch angle is small and according to
equations (9) and (10) the dispersion a? does not change appreciably with depth:

4{.
E(E+71.)

This implies an increase in dispersion with depth from a? to a2 + 4£/E which is a small

(13)

2 _ 2
aC—aO+

effect, except for highly beamed injection with a?E < 1.

Equation (13), however, often overestimates the dispersion in pitch angle. We
obtained the approximate solution equation (8) by setting u = 1 in front of the 8&/0s
term on the left hand side of equation (1). This is reasonable for the non-relativistic
case where the neglected term is of order a? and is insignificant in comparison with the
effects of the diffusion term which is of order unity. As the electron energy increases the
diffusion term becomes smaller and ,fbr;ufﬁciently high energies (Ea? 2 1) it becomes
comparable to or smaller than the br'(ai) term neglected. Thus for relativistic electrons
we need a more accﬁiate treatment of the ”(3@ /971.) term. As shown in part 1 of
Appendix A in this limit the diffusion term can be treated as a perturbation leading to

the approximate solution (A.4) for extreme relativistic electrons and all angles,

L AE Y ]
F(E, p,72) = (——-—-ﬂ( 2 /P)) Foy(E + 7o/u)G(1) (14)



and to a more accurate solution for intermediate and high energies but for the small

pitch angle regime (eq. [4.12]);

BIE]  \?2e-e/a:
e m) ar PO+ 19

[

FE ) = (
where a? is given by equations (9) and (10) and the dispersion as a function of depth is
2

~2 . 2
a; = <ag . 16
1+ 8erca?/2(2+n+ )] (16)

Here 6, = dInF,(E)/dIlnE|(g+r,) and is equal to the spectral index é if F; is a
power law. Note that equations (15) and (16) reduce to the non-relativistic limits of
equations (8) through (12) in the proper limit n ~ 7. < 1. Hence we may use this
corrected solution for all energies.

Table 1 gives the values for 42 and o? along with a?, the dispersion obtained from
numerical solutions of equation (1) including only the collision terms, but without the
small pitch angle approximation, for four values of a? at 7./n = 1. For a? = 0.04 the
diffusion effects are more important (4/Ea? ~ 5 and §a?/2 ~ 0.10). Consequently,
the dispersion increases with depth, while for a2 = 0.40 the reverse is true (4/ Eo? ~
0.5 and §a?/2 ~ 1.0) and the dispersion decreases. In all cases except for isotropic
injection (a2 = 40), 42 provides an excellent approximation to the dispersion a3. For
a? > 1it is obvious that o is not a good approximation but &2 provides a reasonable
approximation. Figure 1 shows a comparison of the pitch angle distribution from the
above analytic approximation (eqs. [15] and [16]) with that from the exact numerical
solution for a power law injected flux given by equations (5) and (6) with § = 5 and
a? = 0.40. The agreement is excellent at small pitch angles, and reasonable at somewhat
higher pitch angles. This comparison gives an indication of both the accuracy of our
numerical code and of the usefulness of the small pitch angle approximation.

9) Fluz integrated over pitch angle. In certain problems, for example those with
straight magnetic field lines, and processes with isotropic cross sections, knowledge of
the pitch angle distribution is not necessary. We define total flux of electrons of a given

energy at a given depth to be Fy(E,7.) = f:l F(E,p,7.)dp and integrate the solutions



from equa;tion (15) to obtain

7 ﬂzFo[E(n'*'Tc)]
BHE(Mm + 7)1 + 697'.:02/2(2 +n+7)]’

Fu(EaTc) = (17)

whiéh, as shown by LP, is independent of a? for non-relativistic electrons for all values
of a2. For relativistic electrons, F, does depend on a? due to the presence of a? in the
correction to the dispersion in equation (16).

The qualitative behavior of F), is similar for all energies. The flux is constant from
. = 0tor. ~ nand afterwards decreases with increasing depth. For a power law
injected flux, Fo(E) = KE~°, we find

F, ~ {KE(E2 + zcs)—““)/? , for E€1 (18)
K(E+71)°/1+6rcal/2(E+1)] for E>1

For large values of 7, > 7, the flux falls off as ‘r,;_(‘s"'l)/2 for E < 1 and as 7% for
E>1

4) Spatially integrated fluz. For a magnetic field which is both uniform and straight
a useful quantity is F,.(E, i), the flux integrated over column depth, which is defined as
F.(E,u) = f0°° F(E, p,7c)dr.. This quantity can be sufficient for the study of spatially
unresolved sources. The zeroth order approximation, equation (14), integrated over 7.
gives

FUE,p) = uG(w) | (B F(E)dE . (19)

We cannot obtain an analytic expression for F, by integrating equations (8) or (15)
due to the complex 7. dependence of the dispersions a? and 2. It is much easier to

integrate the original equation over 0 < 7. < oo. The integral of the source term ¥ is

equal to
/ Tdr. = cFo(E, p) = cf2®,(E, p) (20)
0
and the equation becomes
0o 0 o0d
2,271 —_— —_ YT 2 =
el [(1 u)aﬂ] W B, =0, (21)

where &.(E,u) = f:o ®(E, p,1c)dre.



For relativistic energies the pitch angle diffusion term is small and as above we can
treat it as a perturbation. We expand @, in terms of 1/E and include the first order

correction due to diffusion. The zeroth order solution for the flux is (since F, = ¢, for
E>1)
oo}
FuBow)=u [ F(E\WE, (22)
E

and the first order solution is

FiBw)=s [ FoE'u)dE

E

0 5, O /cc dE' /°° " "
: _ 2 &= | F(E" u)dE
Eau <(1 H )6ﬂ [l“ o E/2 o ( I“l’)

For Fo,(E, u) = F,(E)G(u) this gives

). )
&€ 1

R =6 [ FENRE (1+ 5 - wow)]) o o

where we have defined
E[* E'*dE' [ Fo(E")dE"
[Z F,(ENdE' ’

5;1=

(25)

which is a measure of the energy spectral index (for a power law F,, §, = §).
For the small pitch angle regime with the injected gaussian distribution given in

equation (5), we find

26—0’/0:; oo
FAE,p)= |———=| [ F.(EGE', 26
(E.) [az(uaz/z)]/., (&) (26)
where
2
2 _ @, 4€
% =Tral2 ' 6E " 27)

For the power law injected energy distribution é,, =  and because the dependence
on energy of a? is small (E > 1), the spatially integrated flux should have a power law
index equal to 6 — 1.

5) The total energy spectrum. Integration of F, over 7. or F, over u gives us the

total spectrum F ., (E) relevant for situations with isotropic processes and spatially



unresolved observations. This solution is obtained by integrating equation (19) over dp.

Thus

Foor(E =f G(u)d / "2 F,(E')dE' {E for E<l (98
ror(E) 3 pG(p)dp i (B') Fo(E")dE" E-G-1 for B> 1 (28)

where the last relation is applicable fo a power law injected spectrum. In Section III we

will compare these analytic results with numerical ones.

B. Synchrotron dominated case (R > 1)

In the opposite limit of high magnetic fields and particle energies synchrotron losses
dominate. A general time dependent solution for the case with a uniform magnetic
field and including synchrotron losses (dln B/ds = C = 0) is given in part 2 of
Appendix A. For the steady-state case with continuous injection the result is given by
equation (A4.24). This solution is valid for electrons of all energies, but it takes a simple
form for relativistic energies. The behavior of non-relativistic electrons is qualitatively

similar to that of relativistic electrons.

1) Relativistic limit. The relativistic limit of equation (A.24) is given by
equation (A4.30), which for an injected flux of the form F(E, 1,0) = Fo(E)G(p) reduces

to
_ Fo[E/(1 = 74/ Tocr)|G (1)
F(E,p,s) = = re/rom)? , (29)
where we have defined a dimensionless depth 7, = 35 and
_(—+ 1
Tocr(Ev l‘) - ((1 —/‘2)) E * (30)

At a given pitch angle, F — 0 at 7,., which decreases with increasing energy so that
higher energy pa.rticlés are stripped from the beam at smaller depths. The depth s.,
corresponding to T, also decreases with increasing magnetic field strength through the
B? dependence of S.

At a given 7,, the flux becomes zero at a critical pitch angle a., = cos™(u.r) given
by

per(E,Ts) = E}E (,/1 FAT?E? — 1) . (31)



Note that ucr increases as r, increases, and approaches 1 as 7, — o0. Electrons with
higher pitch angles are stripped from the beam as the depth increases.

In order to see the initial trend of the distribution it is instructive to consider the
small pitch angle regime for 7, € Tyer = (a2E)~!. In this case, we let p = 1 — a?/2 and
G(u) = V2a¢','2e"”2/°’2 to obtain

F(E,p,s) = 2a;2F,(E)e=' /¢ | (32)

where (unless §, < 2)
o? = al 1+ (8. - 2)alr,E] - (33)

with 6, = dIn F,(E)/dIn E. The dispersion a? decreases with increasing energy, depth
and magnetic field. The effects of the pitch angle term and the first order correction
to the extreme relativistic approximation will add terms of order 1/E in the square

brackets.

9) Spatially integrated fluz. The general expression for the flux integrated over
depth is given by equation (4.31). In the relativistic limit we let 3 — 1 and ' — 1

which gives

FAE.W) = s f F,(EdE'
KuG(p)

ST e

where the second equality is for the power law injected flux. [Note that this expression
may also be obtained by integration of equation (29) over r,.] For a given pitch angle we
have a spectral index of (§ + 1) for this case.

5) Total energy spectrum. Integration of F, over pitch angle (or F}, over depth) will
give the total energy spectrum. However, if lim,—; G(u4) # 0 (e.g. isotropic injection),
the resulting expression diverges. This is because electrons with zero pitch angle never
lose energy or change pitch angle; thus with a continuous injection there will be an
infinite number of them from 0 < s < oo. This divergence disappears if as u — 1,
G(u) — (1=p?)%, € > 0 and the total spectrum will be the same as that in equation (34).

10



The divergence will also be absent in the more realistic case of finite injection time or

when collisions are included.

C. Synchrotron and Collisional losses

We need to consider both synchrotron and collisional losses when the ratio of these
losses [R in equation (4)] is near unity. For non-relativistic electrons R ~ 1 only when
B is large. For relativistic electrons, however, synchrotron losses can be important for
moderate values of B? if the density is low. There is no analytic solution for the general
case including the synchrotron and collisional energy losses. Analytic solutions are
possible for relativistic electrons because, as we have seen in sections A and B, Coulomb

collisions and synchrotron radiation do not alter the pitch angles of relativistic electrons.

1) Relativistic limit. In this limit we can ignore the last two terms in equation (1).
The solution of this equation for uniform field and constant plasma density (i.e., £ > 1,

dln B/ds = 0 and constant R,) is given by equation (A.42) which reduces to

(1+ EX(E, p, 7c)/€2)

F(E, l-‘aTc) = Fo[E.(E,}I,TC)]G(/J) (1 + E2/62) — (35)
where
_ o [1+(ec/E)tan(re/pec)
Ea(E, l"Tc) - E [1 _ (Elec) ta.n(‘rc/,uec)] 3 (36)

and €72 = R,(1 — p?).
Note that equation (36) is valid only for E tan(rc/uec) < .. At a given pitch angle,
F — 0 at a depth given by

ETacr — €¢
Tier(Eop) = =" tan ‘(E) , (37)

where 7,cr is defined in equation (30). As in the synchrotron-dominated case, for a given
energy T.., increases as y increases, becoming infinite at u = 1. Then particles with high
pitch angles are stripped away and the distribution narrows as depth increases. In the
limit e, < E (for R, > 1) synchrotron losses dominate and the flux and the critical
depth reduce to equations (29) and (30) respectively. In the opposite limit (R, <« 1,

11



g¢ > E) collisional losses dominate and equation (35) reduces to equation (14) as it

must.

2) Spatially integrated fluz. We cannot integrate the flux given in equation (36) over
pitch angle due to the complex y dependence in E, and ¢, but it is straightforward to

integrate the flux over depth. We find

Fy(E,p) = /Ooo dsF(E, p,s) = (T—i’% /:o Fo(E")dE'

_ pKG(p)
T (14 E%/eR)(§ - 1)ES

(38)
where the last relation is for the power law injected flux. In the two limits R, > 1 and
R, < 1 this equation reduces to the expressions in equations (34) and (26) respectively.

$) Total energy spectrum. If the injected distribution is narrow (i.e., al « 1) we can

integrate equation (38) over pitch angle and obtain F,,,. We find

Kel/RoE?a] —R,E%a?
Fron(E) = GG pyarger |In(RoE ) — 0577 + Z( i Al S
o k=1 *
which reduces to
K 2 2 2.2
m:T(l—RoE ao) s R.F ao<1
Fror(E) = (40)

In(R,E*a2/1.78) , R,E?a® > 1.

(6 —1)R,a2Eé+1
Thus we have the expected spectral index for the collision dominated case at low
energies and the index for the synchrotron dominated case (slightly modified by due to
the logarithmic term) for high energies, provided that R,a? ~ 1. This modification is
due to the fact that collisional losses dominate for electrons with very small pitch angles,

a? € 1/R,E?.

D. Non-uniform field (dln B/ds # 0)

Next we consider a non-uniform field for which dln B/ds # 0. We have no solution

including collisional and/or synchrotron effects and a non-uniform field. [Ho (1986) has

12



given numerical solutions of the equations of motion for the case including synchrotron
losses and converging fields, but he has not solved the kinetic equation.] A solution for
the case with C = § = 0 in equation (1) was given in LP for the flux per unit area of
the loop. Our solution, which is integrated over the cross-sectional area of the loop is

different by a factor of B,/B(s), proportional to the change of the area with depth. In

the absence of other effects B/(1 — u?) is a constant which leads to the solution

F(E,u,) = Fo(B)G (VI—(1 = 17)B./B(5)) 31%—3 , (a1)

which for G(u) = 2a;26_(1'“2)/°’3, becomes

F(E,p,8) =

2F,(E)B, _ [_(1-;,2)3.,]_ (42)

a3B(s) a3B(s)
At any point s, the distribution has a dispersion given by a2B(s)/B,; it is broadened
by a factor of B(s)/B,. The flux at @ = 0 is simultaneously decreased by a factor of
B,/B(s), so that the number of electrons at a given depth integrated over pitch angle
and area is constant with depth, as should be the case for zero energy losses. This result
is independent of energy and therefore the demonstration by LP of the accuracy of the

numerical code remains valid.

1) Integrated Fluzes. We can integrate the solution given in equation (42) over pitch

angle to obtain

F,(E,s) = F,(E). (43)
It is clear that the energy dependence of the total flux F.,, will be the same as that for
F,.
III. Numerical Results
We now describe results from numerical solutions of equation (1). To solve the
equation we must specify the parameters of the background plasma (density and

magnetic fleld) and the distribution of the injected electrons. We assume that electrons

with the distribution given by equation (5) are injected at the top, s = 0, of a symmetric

13



magnetic flux tube and solve the equation only for s 2> 0. We shall use both beam
(a; = 0) and pancake (a; = 7/2) distributions, but we note that the latter distributions
may be inherently ungtable and require acceleration perpendicular to the field lines.
Electrons with u < 0 at s = 0 are re_ﬂected back into the flux tube to simulate the
symmetric geometry. Thus the total flux at s = 0 is equal to F,(E, u)+F(E, —p,0). The
knowledge of the geometry of the flux tube is not necessary here but will be essential for
the evaluation of the angular and spatial dependence of the emitted radiation.

For our purpose here all we need are the values of the coefficients dIn B/ds, S and
C, which can be obtained from the variation of the density and magnetic field with
depth s, B(s) and n(s). If B and n are constant only five constants, §, a1, a?, n,, and
R, = S/C, are needed for the solution. Unless otherwise specified we assume a fully

ionized hydrogen plasma with { = 1.

A. Uniform Density and Field

The parameter which determines the behavior of the electrons here is the quantity
R defined in equation (4). This ratio depends on R, and the energy and pitch angle of
the electrons. We describe the effects of all these parameters by considering plasmas
with different values of R, and discuss the spectral and angular distributions at different
p and E, respectively. We shall limit our discussion to electrons with energies between

10 keV and 100 MeV.

1. Collision Dominated Models

For R, € 1 sothat R,8%y? <« 1 even for the highest energies of interest
collisions dominate. Numerical results for non-relativistic electrons were given in LP and
Leach (1984) and will not be reproduced here. We simply point out that the dispersion
in pitch angle depends on the ratio 7./n & 7./ E? for energies < 300 keV.

For higher energies such a simple scaling is no longer valid but a good
approximation to the flux is given by equations (15) and (16). This is shown in Figure 2
at 7. = n for a model with R, = 3 x 107, § = 5 and a? = 0.40 for 16 keV, 300 keV,

1 MeV and 10.6 MeV electrons. The solid lines are the numerical results for the pitch

14



angle distribution of the electron flux F((a)/F(a = 0) and the o’s denote the analytic
results (egs. [15] and [16]), i.e., for the same model in the limit R, = 0. The pitch angle
distributions broaden with increasing depth due to diffusion except for E = 10 MeV
where diffusion is small and almost overshadowed by the higher order pitch angle term
discussed in Section II.1. For all energies, the distributions are close to the analytic
approximations even for angles near /2.

In Figure 3 we show the same curves for the injected pancake distribution a; = 7/2
and a? = 0.40. Here we have no analytic approximations. As shown by this figure,
the pancake character (i.e., the maximum at 7/2) is lost very quickly for low energies
(at 7 = 7). Even for the highest energy shown (10 MeV) the maximum is shifted to
axnfdat . =7

i) Spatially integrated fluz, F,. In Figure 4 we show F, normalized to unity at zero
pitch angle for energies 300 keV and 10.6 MeV. The solid lines depict beam injection
(a; = 0) with a2 = 0.40, and the dashed lines &; = 7/2 and o3 = 0.40. Comparison
of these curves with those in Figures 2 and 3 shows that for the beam injection, the flux
at . = 71 is a good representation of the total angular distribution F,. For the pancake
injection model the maxima at both energies occur at slightly larger pitch angles for the
integrated fluxes than for the flux at 7. = 7.

i) Pitch angle integrated fluz, F,. In Figure 5 we plot F, versus normalized column
depth 7./n for 300 keV, 1 MeV and 10.6 MeV electrons for the beam injection model
with a2 = 0.40 and 6 = 5. The solid lines are numerical results, and the o’s are the
analytic results from equationr ( 17): Th; z%feerhent is good, and the behavior of F), is
similar for all energies; for small values of 7./7, the flux is constant. As r./n increases
beyond ~ 0.2 the flux falls off, and decreases as 7% for 7./n > 1. This behavior seems

to be very general and fairly independent of the model parameters.

2. Synchrotron Dominated Models

As R increases, the synchrotron losses become more and more important and for
large enough fields, they dominate even for non-relativistic electrons. As an example we

eaxmine models with R, = 3 x 10% (or B?/n = 1), which corresponds to B = 10*G
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and n ~ 108cm~3, an extreme but unlikely condition for solar flares, or to B ~ 102G
and n ~ 102%cm—2, which may be representative of conditions in the magnetosphere

of a neutron star. Except for very small pitch angles, synchrotron losses dominate for
the entire range of energies considered here (R ~ 1 at 1 keV and o = 7/4) and the
distributions behave as we expect from the solution including only synchrotron losses,
i.e., equation (A4.24), which reduces to equation (29) for E > 1. In Figure 6, we compare
the numerical results (lines) with the analytic ones (o’s) for 300 keV and 10.6 MeV
electrons at a depth of 7, = 1 for a source distribution shown by the dashed line. The
behavior of the non-relativistic electrons is qualitatively similar to that of the relativistic
electrons; as the depth increases the distribution narrows and for a given depth, F' — 0
at some critical angle a.. = cos™'(u.,). [See equation (31).] Note that the numerical
results do not quite agree with the analytic results on the value of the critical angle.
This is due to the finite size of the angular grid used for the numerical calculations;

the difference between the values of the critical angle is always one grid spacing and the
numerical results are inaccurate at the point next to the critical angle.

i.) Very small pitch angles: At large depths most particles acquire very small pitch
angles (a — 0) and the numerical results begin to deviate from the analytic solution
beacuse the ratio R becomes less than one and collisions become important. This effect
is shown in Figure 7 in which we plot the zero pitch angle flux (actually F E?) versus
energy for depths 7, = 5 and 7, = 10. The analytic results are shown by the dashed
lines, and as we can see, for non-relativistic energies, the flux at zero pitch angle diverges
as E — 0. This can be deduced from equation (A4.24) which in the zero pitch angle limit

reduces to

F(E,7,,0) = F,(E)G(n)e*™/?7 . (44)
The angular width of the distribution decreases exponentially;
ol 47y TR0 (45)

so that the flux integrated over pitch angles, Fj, < F(a = 0)a?, is finite.
The analytic solution breaks down not only because the effective value of the ratio

R decreases as the critical angle approaches zero, but also because the gradient of the
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pitch angle distribution increases, and collisional diffusion can no longer be ignored.
From equation (1) the ratio r,, of the diffusion term to the energy loss terms (both

collisional and synchrotron), is of order
b = EE[B**a’(1+ By Roa®) ™! . (46)

so that for pitch angles less than

m—” - -1 1/2
26°y*R, (47)

ap =

r, exceeds unity and the analytic results are not valid. The depth at which a? = o2, is

D

thus
By 4 (48)

Ted = - W .
For depths beyond 7,4 we do not expect the analytic solution to be useful. Table 2 gives
values for af) and 7,4 for various energies and R, = 3000.

Note that a? increases and 7,4 decreases with decreasing energy. For 16 keV
electrons, the analytic solution is incorrect even at 7,=1, while for 10 MeV electrons
the solution may be used for large values of 7,. This behavior is evident in Figure 7. At
r, = 5 and 10 the numerical solutions fall away from the analytic solutions for energies

less than 2 MeV and 5 MeV respectively.

3. Models with Intermediate R,

Next we consider a model with R, = 1.3 (B?/n ~ 4 x 10™*) so that synchrotron
losses are important for energies greater than the rest mass energy, and collisions
dominate for E <300 keV. For low energies the scaling of the pitch angle distribution
with 7./E? described in item 1 above is still valid. For relativistic electrons with
energies 25 MeV the synchrotron energy losses dominate and we obtain distributions
similar to those expected from equations (29) and (30). According to these equations,
the pitch angle dispersion will be the same (or curves of F' versus a will have the same
shape) for depths 7, < 1/E. We have found that the numerical results agree with the
analytic values of o? (eq. [30]) to within 10 percent for 7,E = 1.
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In Figure 8 we plot the integrated flux distributions F;/F,(a = 0) for the beam
(solid lines) and pancake (dashed lines) distributions with a? = 0.40 at 300 keV and
10.6 MeV. The curves are intermediate between those given in Figures 4 and 6 with the
effect of synchrotrdn losses evident 10.6 MeV and the effects of collisions dominant at
300 keV. Note that the pancake injection model still has a non-zero maximum, but very
few electrons with a > 7/2.

In Figure 9 we plot F,(E, 1), the flux integrated over pitch angles, versus energy
for the beam and pancake distributions with o2 = 0.40 at 7, = 0.1 and 1.0. At
larger depths the curves fall off at low energies due to increasing collisional losses with
decreasing energy and they steepen at high energies due to increasing synchrotron losses
with energy. The synchrotron losses for the pancake distribution are more noticeable
because a larger proportion of the electrons have high pitch angles and therefore higher

synchrotron losses.

4. Speciral indez and curvature

We now discuss the spectral index of the spatially integrated flux F.(E,u). In
Table 3 we give the spectral indices, slopes of power law fits of F, versus E curves, for
different pitch angles in different energy ranges for R, = 3 x 10~% and R, = 1.3. For
energies <300 keV, we find essentially the same angles and models with spectra for
R, = 1.3 in general steeper. Here collisions dominate and the slope is approximately
§ — 1. For relativistic energies (E 2 10.6 MeV), we find different behavior for the two
different cases. For the beam injection and o < 7/2, the slope is slightly larger than 61
for small R, and nearly é + 1 for large R and nonzero pitch angle. These values are in
good agreement with the results expected from the analytic calculations of Section 2.3.
For a > 90°, however, this slope becomes enormous, reflecting the absence of collisional
diffusion for high energies. For uniform fields, very few relativistic electrons are scattered
to high pitch angles.

For the pancake injection, the spectral indices are larger for relativistic energies.
This is again due to the larger proportion of electrons with pitch angles near o = /2.

To show the effect of synchrotron losses, in Table 4 we give spectral indices fit to
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the total integrated flux F . (E) for § = 5, a2 = 0.40 for both pancake and beam
injection, and for R, = 3 x 1072, 3 x 1073, 1.3, and 3 x 10°. We see the expected
results for the beam distributions; for low energies (16 to 300 keV) the index is ~ 6 — 2
for low fields and incn'eases for high fields. For high energies (10 to 76 MeV) the index is
~ § —1for B = 0 and increases to slightly less than 6§ + 1 for B > 2000 G. Thus our
analyticfesults give accurate answers for the total flux, which is important for spatially
unresolved sources.

For the pancake injection, the results are the same for the non-relativistic and
semi-relativistic ranges, but as was the case for the other integrated fluxes, the spectral

indices are larger for relativistic energies.

B. Uniform Density, Converging Fields

We now turn to models which have non-uniform (in particular, converging)
magnetic fields. This produces two changes. First, since dln B/ds is not zero we must
include the second term in equation (1). Second, the coefficient S varies along the field
lines so that R, is no longer constant. We parametrize these models with B,, the value
of the magnetic field at s = 0, and the parameter Sy = dln B/ds which we assume to be
a constant; b(s) = B(s)/B, = exp(sSy). The effects of convergence become important
when S} is of order of the coefficients C or S for collisional and synchrotron losses, or
when the dimensionless column depth 7, = [ Sids, which in this case is equal to Inb, is
greater than 7, or 7,. Since we have assumed constant values for Sj and C the relative
importance of these two effects remains constant along the field lines but varies with
the energy and pitch angle of the electrons, convergence becoming more important for
higher energies and larger pitch angles. The coefficient S, however, varies along the field
lines (S = S,b?) so that the relative importance of the synchrotron losses increases with
depth and, of course, with energy. Thus at sufficiently large values of depth s or energy

E, 74 = (S,/S3)(b® — 1)/2 exceeds 73 and synchrotron losses become dominant.

1. Strong convergence and loss-cones

An important effect of the field convergence (when Sy > C and 5) is to produce
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pitch angle distributions with distinctive “loss-cones” in the direction of the field lines.
We have no analytic solution which accounts for convergence along with snychrotron
radiation and collisions so we present numerical results only.

To illustrate the interplay between these processes we consider a model with
isotropically injected flux (i.e., a? = 00), with C =2x 10" 3cem™?!, S, = 6.5 x 107 18cm !
(e.g., B, = 100 G, n, = 10%m™?), and Sy = 9 x 10~1%cm~", which is large enough to
insure that the effects of convergence dominate over synchrotron and collisional losses for
150 keV < E <100 MeV. The pitch angle distributions at the top of the loop for 16 keV,
1 MeV and 10.6 MeV electrons are shown in Figure 10 for a model with finite length
Smax = 2.4 X 10*km or Ty max = 2.3. Electrons reaching s > Smax are ignored. In
the absence of collisional diffusion electrons with initial pitch angles a;, < a., with
SiN ey = b;i{(z reach Syax and escape. The 10.6 MeV curve in Figure 10 shows this
rapid decrease in electron flux a $27° and a 2 7 — 27°.

This effect is less pronounced at lower energies due to collisional diffusion (as shown
by the 16 keV curve in Figure 10) and also for large magnetic fields and high energies
due to the effectes of synchrotron losses. This is shown by the dashed line in Figure 10
for 10.6 MeV but with S increased by a factor of 40.

2. Weak convergence, relativistic electrons

In some situations the presence of convergence can have significant consequences
even when convergence is not dominant. As an example we consider collision-dominated
models with C = 2 x 10~%cm~! and Sy = 3.7 x 10~ %cm™!. In spite of the fact
that S, < C the effect of the convergence term is approximately equal to that of the
pitch angle diffusion term for relativistic electrons, and can have a significant influence
in broadening the pitch angle distribution when collisions are ineffective in doing so.

In Figure 11 we compare the distributions of the uniform (U) and converging (C) field
models with isotropic injection, E = 10.6 MeV, . = 7 and two values of R,.
Synchrotron losses dominate for R, = 1 so that there are few electrons with high
pitch angles and the convergence has essentially no influence. For R, < 1, however,

there are some electrons with high pitch angles at this depth and the effect of field
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conv'e'rgén-ce is to increase the number of such particles even further. This effect is
particularly noticeable at higher energies, but not too high an energy when synchrotron
losses dominate. Even a small amount of convergence results in a substantial number of
these reflected electrons as shown by the increasing divergence of the C and U curves in
Figure 11 for pitch angles o > 7/2.

To further illustrate this effect, in Table 4 we give the values of spectral indices from
power law fits to the spatially integrated flux F, for the cases with small convergence
discussed above. The values of the spectral index m, for low energies 16 to 300 keV
are similar to those of the uniform field models. At higher energies, convergence has
little effect for @ < /2, and the spectral indices are again similar. But for a > /2
the indices are much smaller for the converging field cases since there are more reflected

electrons.

C. Solar Flare Models

It is believed that during the impulsive phase of a solar flare high energy
particles (10 keV to > 10 MeV) are accelerated in a coronal magnetic loop of length
10° to 10'° cm, with density n =~ 10!° cm™2 and a magnetic field of a few hundred
gauss (Kundu 1983, Lu and Petrosian 1989). Below the transition region the density
increases rapidly. It is not known how the magnetic field varies with depth but it is
suspected to increase to a few thousand gauss at the photosphere. Above the transition
region the plasma is fully ionized (C = C' or ¢ = 1) but below the transition region the
temperature decreases, and the atmosphere becomes neutral.

For n = 10! ¢cm~2 and B, = 100 G, the quantity R, = 3 x 107% at s = 0 and
could be as large as R, = 0.3 at the transition region with . = 0.0014 and By, = 103 G
(or 73(s¢r) = 0.07). Thus convergence may be important but collisional and synchrotron
losses are negligible except for E < 20 keV and E > 50 MeV, respectively. Below the
transition region density increases rapidly and unless the magnetic field scale height
begins to decrease rapidly synchrotron and field convergence effects become negligible.
In Figure 12 we plot the pitch angle distributions for 300 keV and 10.6 MeV electrons at
the top of the loop (solid lines), and at 7. = 1 (dashed lines) for models with isotropic
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injection, § = 5and R, = 3 x 1072 (B, = 100 G and n = 10!°cm™?) at s = 0 which
increases to R, = 0.3 at the transition region. As mentioned above, the convergence will
be important in the corona and at the top, we have loss-cone distributions. Below the

transition region collisions dominate and we see typical behavior at both energies.

Not surprisingly, the integrated fluxes behave as in the uniform density collision
dominated cases. Unless the magnetic field is very high above the transition region,
there are no discernable effects of synchrotron losses on the integrated fluxes. Since
Te(s¢r)/n <€ 1 for most of the energy range, the integrated fluxes F, and F,, are
dominated by the behavior in and below the transition region and the integrated fluxes

look like those for collision dominated models.

One quantity which is readily available from observations is the energy spectral
index. To show the effects of various parameters on this quantity, in Table 5 we give
values for spectral indices m., (for energies between 10.6 and 76 MeV) and m. (between
16 to 300 keV) of the integrated flux F, for models with é§ = 5, including: uniform field
models with beam and pancake injection with a> = 0.40 and R, = 3 x 1073 and 1.3,
models with isotropic injection, B, = 100 G (R, = 3 x 10~3 at s = 0) and mirror ratios
of b, = 1,2, 5, and 10; strongly beamed models with a2 = 0.04, B, = 100 G, and
b = 2 (to show how the effects of small convergence combine with narrow beaming);
and models with a? = oo, B, = 2000 G (R,(top) = 1.3), and b; = 1 and 10. For all the
weak field cases, even for low levels of convergence, and for the sharply beamed injection
the values of Am = m. — m, are close to zero for @ > 7/2. For the high field case
the value of Am is larger for @ > 7/2 and nearly as large as for the uniform weak field
case. Thus we find that a high field (here B(s,;) = 20,000 G) can negate the effects of

convergence.

Values of the spectral indices for the total integrated flux for these models are given
in Table 6. For the cases with B, = 100 G we find that F.,,(E) behaves as in the
collision dominated uniform field cases, since F,, is dominated by the behavior of
the distribution below the transition region, where the collisional scale length is much

smaller than the scale of convergence. For the model with B, = 2000 G increased
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synchrotron energy losses lead to larger slopes in all regimes.

D. Gamma-Ray Burst Models

Gamma-Ray bursts are believed to occur in the magnetospheres of neutron stars
with magnetic fields ranging from 10'? G (as deduced from absorption lines) to less than
1011 G (Matz et al. 1985) to allow high-energy (E > few MeV) vy-rays to escape without
pair production. The power law energy spectra observed in some bursts to energies
greater than 30 MeV are indications of the presence of non-thermal electrons accelerated
to similarly high energies. These conditions require the examination of the transport of
the relativistic electrons in variable magnetic fields and possibly inhomogeneous plasmas
reaching densities of as high as 10%° electrons/cm™? at the surface of the neutron stars.
All three effects on the electron transport of the relativistic electrons considered here
(synchrotron, collisions and field convergence) may play significant roles in this process.

If the electrons are accelerated in the magnetosphere, where R, is expected to be
very large, they suffer synchrotron losses. They quickly lose all of their perpendicular
momentum and slide along the field lines with near zero pitch angles. In this phase
the synchrotron loss formulae provide an accurate description of the problem up to
some column depth. As shown in Section III, for large values of 7, collisional diffusion
becomes important. Since the field lines are anchored to the neutron star, the electrons
hit the surface where they undergo pitch angle diffusion and emit more synchrotron
or bremsstrahlung radiation if the density is very high. Equations dealing with both
synchrotron and collisional processes will be applicable. It is unlikely that field
convergence will play a significant role durnig this transport because the electrons will
have small pitch angles and the scale height of the convergence Sy ! (of the order of the
neutron star radius) is probably much larger than the scales C —1 or S~ for collisional
and synchrotron process.

One can consider the problem in two steps, starting with the magnetospheric part.
Consider a loop structure in the magnetosphere of a neutron star, with a magnetic field
of 10! G and an ambient electron density of < 10**cm™3. For this case R, > 32.3,

and synchrotron losses are dominant. The scale length for synchrotron processes is
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§-1 = 1.55 x 10~3cm, which even for a length of about one cm gives 7, > 10% which is
much larger that 7,4 (eq. [48]) where diffusion must be taken into account. [See Table 3.]
We cannot calculate ac‘:curate analytic or numerical solutions for this case. The analytic
solution diverges and the width becomes very small. We may, however, obtain a good
approximation to Fj, the flux integrated over pitch angle, using the analytic solution
with syﬂchrotron losses only. Collisional diffusion has no effect on the value of F},,
therefore we expect this calculation to be useful even for extremely large values of 7,.
This flux as 7, — oo can then be used as input for the second part of the problem, where
we solve the full equation starting at the surface of the star.

For large 7, the electron distribution is narrow and we may use the small angle

approximation to the synchrotron-only solution. We have from equation (A4.27),
X =1-2a%/a?,, (49)

where a,, is given by equation (A.29). For isotropic injection, the solution

equation (A.24) for the electron flux for large 7, becomes
F(E,a,1,) = Fo(E)e2m+/Bre=0/0 (50)

where the dispersion is given by

2 azrﬂz72 (51)

NG+ ey +3]

The width decreases and the flux for zero pitch angle increases with 7, but the flux

integrated over pitch angle is finite and is given by
Fu(E, s = 00) = Fo(E)[(6 — 1)y +6y+3)71. (52)

If we include collisions the flux at a = 0 does not diverge, and the width remains
finite but small. Since the width is too small to include on the pitch angle grid which we
use for numerical solution, for the calculation of the flux below the surface of the star we

inject all of the flux given by equation (52) at a = 0.
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The plasma at the surface is not an ordinary plasma. The electrons may be
degenerate and there are heavy ions. Since the ratio £ of the diffusion coefficient to
the energy loss coefficient is highes by a factor equal to the atomic number of the ions,
we have the situation in which synchrotron energy losses and collisional diffusion are
important. The pitch angle distribution of 1 MeV electrons for a model with a density of
Fe ions of 1027cm ™3 and a magnetic field of 10'? G (or R, = 1.2) is shown in Figure 13.
Each curve is marked by the value of 7. = 7, for that depth. The flux at 7. = O is a
delta function, but the distribution is nearly isotropic even for small depths. Since this
is true, when looking at any emission the important quantity is the total electron flux
F_or(E). The spectral index at the top of the magnetospheric loop is 6 = 3 and the
spectral indices for the delta function flux at the surface are m; = 2.3, mm = 3.4, and
m., = 4.7. The indices for the total flux are m; = 2.6, mp = 44, and m, = 5.9.
As we can see, this combination of effects (collisional diffusion plus synchrotron losses)
results in steepening of the spectrum at every energy, and large breaks in the spectra
between non-relativstic and relativistic energies. Such breaks have been observed in the
spectra of y-ray bursts. A detailed comparison with observations is beyond the scope of

this paper and will be treated in a subsequent work.

IV. Summary

We have extended the Fokker-Planck analysis used in LP to include ultrarelativistic
electrons and effects due to both collisions and synchrotron emission. We have solved
the resulting kinetic equation (eq. [1]) analytically in some simple limiting cases, and
have shown that the numerical results for these cases agree well with the analytic
results, thus verifying the accuracy of our numerical code. We have shown that
the analytic results provide a useful guide for the qualitative description of the flux
distribution of the non-thermal electrons and examined the effects of non-uniformities
in the magnetic field, in particular converging magnetic field geometry.

Some of the features of our results are:

(1) In situations dominated by collisions equations (15) and (16) give a fairly

accurate description of energy spectra of both relativistic and non-relativistic electrons
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and of thé flux distribution for the gaussian pitch angle distribution of accelerated
electrons. Even though these equations are small pitch angle approximations the are
good for much larger angles than expected. Equations (17), (24) and (28) give the flux
integrated over pitch angle, depth and both, respectively.

(2) For problems where the synchrotron process is dominant we have obtained a
complete time-dependent solution (eq. [4.21]) and a steady state solution (eq. [A.24]).
The relativistic limit of the latter acquires a simple form given by equations (29), (32)
and (34).

(3) If both synchrotron and collisional losses are important then Equations (35),
(38) and (39) give the fluxes in the relativistic limit. Analytic solutions are not possible
for the less likely situation of non-relativistic energies with both synchrotron and

collisional losses.

(4) The above results are for uniform magnetic fields or are applicable when
the magnetic field variation scale is much larger than the scales for collisional and
synchrotron losses. For cases when this is not true one must resort to numerical

solutions as described in the text.

The discussion of the behavior of non-thermal electron distributions included in this
paper will be rimporta.nt for our future work, in which we will use the numerical solutions
to calculate the expected radiation during the impulsive phase for solar flares or cosmic
gamma-ray bursts. Examples describing models for these bursts will be presented
and we shall compare the radiation signature of such models with observations and

determine the distribution of the accelerated electrons responsible for those radiations.
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Appendix A: Analytic Solutions

We now present some approximate analytic solutions of equation (1).

1.) Collision Dominated Solutions

Consider equation (1) with dln B/ds = 0 and S = 0. We have (with dr. = Cds)

(A.1)

where ¢ = C'/C(= 1 for a fully ionized background plasma). The small pitch angle
solution for non-relativistic electrons is given in the text. This solution (eq. [8]) cannot
be extended to high energies because as E increases the term ignored (of order a?8®09s)
becomes more important relative to the diffusion term. For extreme relativistic electrons
we may ignore the pitch angle diffusion term on the right hand side of equation (4.1),
and we have

0 0% S

which for injected ®(E, ,0) = ®,(E)G(1) has the solution
B(E, p,7e) = $o(E + 7/ p)G(4) . (4.3)
For relativistic energies, 3 = 1 and F' = ¢®. In the small pitch angle regime and for a

gaussian pitch angle distribution G(u) = 20:;26"’2 /a2, equation (A.3) gives

~a?/a? 1 S.ra? 17
a? AE+ ) ’

o

F(E, 1) = Fo(E + 1) 22

(A.4)

where 6, = dln F,(E)/dln E|g4,, and is equal to the spectral index when F, is a power
law. Note that the term in the brackets which is of order 6.a? has an effect which is
opposite of the diffusion term; namely that dispersion decreases with increasing depth
Te.

For lower energies or smaller a2 the diffusion term becomes important and in the
intermediate energies it increases the dispersion with depth at a rate determined by the

value of 1/Ea?. To account for this effect we treat the pitch angle diffusion term as a
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perturbation. The fractional perturbation we denote by ¢;. In the small pitch angle

regime ¢; obeys the equation

01 04y 4 (a’—al
5, OF _ElaI\ a2 /) (4.5)
where
o = ag . (A.6)
T 148a2/2(E+T.) ] '
the solution of this is
4¢ [a® — ai Te
$1 = '5:2; ( " EE+r) ‘ (A7)
Combining this with equation (A4.4) we then obtain, in the small pitch angle regime,
2e—a’/a;
F(E,p,mc) = Fo(E + Te)——— (A.8)
where
a; = ap + [4r./E(E + )], (4.9)
and
&2 o A10
% = T 6mal/AE+ 7] (4.10)

This form is similar to the non-relativistic solution (equations [8] through [10] in the

text). With a small modification of &2 to the form

2
~2 Qe
- , A1l
G = T+ 6.7002/2(2 + 1 + 7o)] (4.11)

with a? given by equations (9) and (10), and addition of the velocity factors as in

equation (8) we can combine the solutions of the two limiting cases as

_ B(E] 2 gg—a’/a;
FUE e} = (ﬂ[E(q T TC)]) o FlB( + 70l + 6erea®/22 4 7+ 70)
_ B[E] 2 9¢—a’/a; _
- (ﬂ[E(n + rc)]) o FelE(+ 7o)l (4.12)

which describes the solution with a high degree of accuracy and to much larger values of

the pitch angle than expected considering the small pitch angle approximation.
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2.) The Uniform Field Synchrotron Solution

It is well known (see e.g., Jackson 1962) that the rate of change in 3, = By, the
velocity parallel to the magnetic field, due to synchrotron losses is zero; i.e., (Bu)a = 0.
If collisional losses are neglegible and the B field is uniform, it is then convenient to
rewrite the kinetic equation in terms of 8, and 8, = A(1 — u?)*/2. Furthermore, since f,

is constant the time dependence can easily be incorporated and equation (A.1) becomes

(3at +ﬂ“3 )f 03, [Sﬂ*(l Bl - By )I/Qf] (A.13)

The function f is now the distribution function in terms of (8, 3.) and we can use the
Jacobian of the transformaton from (E, u) to (8y,8.) to give us the relation between f

and f, the distribution in terms of (E, u);
F(8y80) = [ = @2 f(B, )] | (4.14)

The tilde denotes quantities which are to be functions of (5, 8 L)ie, ¥ = (1- 5;7’ —
B2)-1/2 E=4—1,and = 8,/(B} + B2)1/2, If we make the substitution

h=8.01-82 -8 f =5 -2 -)f(E,B), (A.15)

and define y = ctS and 7, = sS equation (A4.13) becomes

~

ok . 6h

3 ﬂu =B.(1- 81 - B )1/ (A.16)
We define a new variable u by
dB.
du = , Al7
YRR - (417
so that
- 1
u = —v,sech 1(7./9;) and 8, = -‘;—sech (—u/’y.) , (A.18)
"
where v, = (1 - B~ -1/2 Equation (A.13) is simplified to
Oh oh Ok (4.19)

'a—y+ﬂ||5;=5;.
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If at 7, = O the distribution is given by g(y)f,(E, i) so that

o, 0,9) = [¥(7° = )2 = LB B, s (4.20)

Equation (A.13) has the simple solution h(u,7,,y) = g(y — 7o/B ) ho(u + 75/8;), and the
distribution function in terms of energy and pitch angle f = R(u,7s,y)/ 872 (1 — p?) is

_ W =T /B [cox2 _ /20y _ 72 P
f(E, py7s,y) = =) [‘/(7 /1 -4 )fo(E,u)] Blutr /o) asms /1)
(4.21)
It is easy to show that
E(u+7,/8) = E(X) = (v, - X)/X
and
ﬁ(u + Ta/ﬂu) = ﬁ(X) = IBR‘Y“ /(7: - X2)1/2 ) (A'22)
where
_ |u| — Ta/ﬂll _ Yy~ 7tanh(r,/ﬂ“7u)
X(E,u,7s) = tanh < ™ ) =5 - 7 tanh(rs/Br7y) . (A.23)

Returning to the time independent case of continuous injection, for which g(y)is a

constant, we find for the flux F' = 3cf

2 F(E(X), 5(X),0) ( 1 X? )

P ) = =20 X*(ny - X%)

(A.24)

where F(E, u,0) is the injected flux.
At 7, =0, X =7, /7, with increasing 7,, X and the flux F' decrease monotonically
and become zero at a depth given by

+
Toer = ‘B"YH‘ In L 71 . (A25)
2 Y- 7.

The value of 7,., decreases with increasing energy; particles with higher energy travel
shorter distances, and for a given energy 7,.r is smallest at 4 = 0; particles with high

pitch angles lose energy more quickly than those with smaller pitch angles.
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At a given depth 1,, the flux approaches zero at a critical value of the pitch angle
a.r = cos~!(ucr) which we may calulate by solving the trancendental equation
1 ] _ To(1 _ﬂzﬂ' )1/2
¥(1 - ,32l‘gr)1/2 ﬂ/"cr '

For large depths 7, — 00, per — 1, and the distribution becomes infinitely narrow, and

" tagh-! [ (4.26)

at the same time,the flux at x4 = 1 gets infinitely large. For p — 1, or a? — 0, we have

ﬂ2720262r,/ﬁ7

=1-
X 5 ,

(A.27)
E(X)=E, y(X) = p, and
F(E,p =1,7,) = F(E,1,0)e2™/57 (A.28)

For a., < 1, we may solve equation (A.26) and find value for the critical angle given by
427 /B
gyt

Even though the flux at & = 0 diverges for large depths, the width becomes zero, so that

(A.29)

acr -

the flux integrated over pitch angle, which is of order F(u = 1)a?,, remains finite.

The solution has a particularly simple form for ultrarelativistic electrons. We let
B — 1inequation (4.21) and find X = 4,(1 — 7,/7er)/7 <€ 1, p(X) = p, and if
F(E,u,0) = F,(E)G(p) then

F(E,ps) = °[E/((11_‘T:'/T ::i')Z]G(" ), (4.30)

where T,cr = p/ E(1 — u?). This solution is discussed in Section II.

In Section II we discuss the flux integrated over depth for given pitch angles. .
This would pertain to the case for which the field lines are straight and for spatially
unresolved observations. We may obtain the flux integrated over depth either by
integration of the solution in equation (A4.30) over T, or by solution of the full equation

(eq. [A.13]) integrated over T,. We find

x o F EI
FT(E’#)E./; F(E,p,1,)dr, = ;2(—1-)61‘—”2-5/5. dE' ﬁ('2 )G (ﬂ') , (A.31)
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where we must keep B, constant in the integrand. The integration is complex for the

general case due to the complex dependence on 8’ in the integrand. For an initially

isotropic distribution, G(3x/8') is constant and F, f:° ﬂ"zFo(E')dE'.

3.) The Relativistic Energy Loss Solution

As in the collisional case, the synchrotron pitch angle change term is much less
than the energy loss term for E 3> 1. The relativistic electrons lose energy at constant
pitch angle until they become non-relativistic when the collisional diffusion and £, terms
become important. Here we ignore these terms, keeping in mind that we can add those
terms as perturbations as in item (1.) above if neccesary. We take 'the limit 3 — 1 and

let dln B/ds = 0 in equation (1). If we define 2 = C/S(1 - u?), then

o o®
Mo = (1+ E? /63)-6—5 +2¢2EY (A.32)

and if dnp = dE/(1 + E?/¢?), then

n=cctan”'(Efec), E(n)=ectan(n/ec), (4.33)
and
pgf—’ = %@ + Ez-ta.n (-’7-) $ (4.34)
Next we let ®(n, u,7.) = é(p)¥(n) where p = n + 7./u so that
0% _ d¢ 0®| _  d¢ dy
#aTc " - dp y 677 v - 1l)dp dT] ] (A35)
and equation (A.34) reduces to
W _ 2 (2
dn - Ee tan (ec) v (4.3
which has the solution
Y(n) = Posec™(n/ec) . (A.37)
This gives
'1’('7» PiTe) = ¢(p)'¢’o Sec-z(ﬂ/Ec) ) (A.38)
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where 1), is a constant of integration.

For the initial condition

&(E, 1,0) = ¢(p =n)v(n) = ¢ F[E(m)]G(p)

we then find
. (Mo = ¢~ G(u)F,[ec tan(n/e.)] sec}(n/ec) -
Thus
b(p) = ol tm(ﬂ/sczzpcz(u)secz(p/sc)
and, finally

F(E,p, 1) =c®(E,p,7c) = sec?(n/ec) - sec(n/ec)

We substitute for p and 1 to obtain the flux int terms of E and y;

(1+ EXE, p, 7e)/€)

F(E, By Te) = Fo[Et(Ea l‘vrc)]G(f‘) (1 + E2/62) ’

where
E + ¢, tan(r./pue.)
ec — Etan(r/pue.) | -

E,,(E,,u, Tc) =€ [

33

cp(p)o Foec tan(p/e.)|G(n) sec?(p/e.) .

(A.39)

(A.40)

(A.41)

(A.42)
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Table 1

A comparison of analytic widths with numerical results for 10.6 MeV electrons,

with § = 5, a2 = 0.04, 0.10, 0.40, and 40, at depth 7. = 1. The subscript * denotes a

numerical result.

4/Ea}  8a}/2 ol  ai(n)  &:i(n)  ai(n)
5.00 0.10 004 013 012 0.1l
2.00 025 010 020 016 0.7
0.50 100 040 030 031 031

0.005 100.0 40.0 40.10 0.81 0.61

Table 2

Critical values for the dispersion a? and depth 7,q.

E 16 keV 300 keV 1 MeV 10.6 MeV
a? 0.09 0.01 3.50 x 1073 1.80 x 10—*
Tsd 0.83 3.40 7.00 42.0
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Table 3

Spectral indices of the spatially integrated flux F; for energy ranges 16 to 300 keV,
600 keV to 5.32 MeV and 10.6 to 76 MeV, respectively.

R, = 3 x 1073 R, = 1.3

o my Mm My My Mum M.y

Beam, a% = 0.40

54° 4.00 4.20 9.62 4.16 5.68 5.99
126° 4.23 6.86 14.7 5.17 14.3 15.9
Pancake, o2 = 0.40
54° 3.98 3.99 5.85 4.14 5.46 5.99
126° 4.15 6.41 20.3 4.88 17.4 19.6
Isotropic, a? = co
54° 3.98 4.03 5.87 4.13 5.50 5.99
126° 4.18 5.87 24.7 5.00 17.6 19.6

Isotropic, a’ = oo, convergent
54° 3.98 3.99 5.06 4.03 5.18 6.00
126° 4.17 5.72 11.2 4.39 15.5 14.6
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Table 4

Spectral indices of F,, for § = 5 and a2 = 0.40.

Beam Pancake
R, My Mm m, m, Mm my
0 3.20 3.91 4.05 3.22 3.90 4.05
3x1073 3.20 3.94 4.92 3.22 3.97 5.54
1.3 3.32 4.86 5.80 3.40 5.38 5.97
3x 108 3.50 6.11 6.02 4.38 5.83 5.98
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Table 5

Spectral indices of F, for different pitch angles for various flare models. The

quantities m, and m. vare as defined for Table 3.

a 54° a = 126°

2
4

0.40 0 100
040 /2 100

ay B,(G)

b
1 4.05 4.06 4.89 10.30
1 3.96 4.02 4.54 9.89
0.40 0 2000 1 4.04 4.20 4.89 12.70
0.40 /2 2000 1 3.96 4.18 4.54 12.8
0.40 0 104 1 4.03 9.62 4.83 24.00
0.40 /2 104 1 3.98 10.0 4.53 26.30
1
2
5

0o - 100 3.98 4.02 4.65 9.93
0o - 100 3.94 4.05 4.39 5.02
oo - 100 4.04 4.06 4.43 5.00
00 - 100 10 4.18 4.10 4.47 4.98
0.04 0 100 2 4.13 4.05 5.27 4.99
o0 - 2000 1 3.98 4.17 4.65 13.10
00 - 2000 10 4.35 7.94 4.60 6.12
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Table 6

Spectral indices of F, for the flare models of Table 5. Am = m, —m..

a? oy B,(G) B../B, my Mm m.y Am
0.40(b) 0 100 1 321 391 403 083
0.40(p) /2 100 1 322 391 404 082
0.40(b) O 2000 1 321 391 407 086
0.40(p) m/2 2000 1 303 393 432  1.09
0.40(b) 0 104 1 319 396 465 146
0.40(p) /2 108 1 328 427 6.00 272

o0 - 100 1 321 391 4.03 083

o0 - 100 2 322 38 403 081

% - 100 5 338 391 4.06  0.68

0 - 100 10 352 395 411 059
0.04(b) 0 100 2 319 319 403 084

o0 — 2000 1 321 391 416 095

o0 - 2000 10 367 444 501 133
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Figures

Figure 1.— Electron flux (arbitrary units) vs. pitch angle (degrees) for the collision-only
case with E = 10.6 MeV,§ = 5,a; = 0, a2 = 040, n, = const. = 101%m-3,
and constant B. The analytic results, from equation (15), are given by o’s and the

numerical results by solid lines. Each curve is labeled by the value of 7. /7.

Figure 2.— Electron Flux vs. pitch angle at 7. = 7, for 16 keV, 1 MeV and 10.6 MeV
electrons for the collision dominated (R, = 3 x 10~%) model with § = 5, a; = 0 and
a? = 0.40. Each curve is labeled by the value of the electron energy in MeV. The
solid lines are the numerical results, and the o’s are the analytic results. The flux

has been normalized to 1.0 at a = 0.

Figure 3.— Same as Figure 2, for the pancake injection model (@; = 7/2) with § = 5, and

a? = 0.40. There are no analytic results for this case.

Figure 4.- The Flux integrated over depth F, versus pitch angle for the beam (a; = 0,
solid lines) and pancake (a; = 7/2, dashed lines) models with R, =3 x 107°, 6§ =35
and a? = 0.40, for 300 keV and 10.6 MeV.

Figure 5.— The flux integrated over pitch angle F,, versus normalized column depth 7./n
for the model with a; = 0, a? = 0.40 and R, = 3 x 10~°. The lines reperesent
numerical results and the o’s the analytic results from equation (17). These curves,
labeled by the value of the electron energy in MeV, are nearly independent of the

injection parameters such as §, aZ, etc ...

Figure 6.— Electron flux versus pitch angle for the synchrotron dominated case with
R, = 3x10% att, = 1fora; = 0,a? = 0.40, with each curve labeled by
the value of the electron energy in MeV. Solid lines represent numerical results,
and the o’s the analytic results from equation (A.24). The dashed line depicts the

injected flux. All the fluxes are normalized to the flux at 7, =0, a = 0.
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Figure 7.— Flux at zero pitch angle versus energy, for the model with R, = 3 x 10°. The
dashed lines are the analytic results of equation (A.24), and the solid lines are the
numerical results; all are labeled with the appropriate value of r,. Here the flux is

multiplied by E°, so that the curve for zero depth is flat.

Figure 8.— The Flux integrated over depth F, versus pitch angle for the beam (solid
lines) and pancake (dashed lines) models with R, = 1.3, § = 5 and a3 = 0.40,
and 300 keV and 10.6 MeV electrons.

Figure 9.— Flux integrated over pitch angle F, multiplied by E® versus electron energy
for the models with § = 5, a2 = 0.40, and R = 1.3. The curves are labeled with the
appropriate values of 7,. The solid lines are for a; = 0 (beam) and the dashed lines

are for a; = m/2 (pancake).

Figure 10.- Electron flux versus pitch angle at the top of the loop (s = 0) for the ‘short’
converging field cases with § = 5, a2 = oo and b = 10. The solid lines are for the
case with Ro(top) = 3 x 1073 at the top, the dashed lines are for R,(top) = 1.3
and each curve is labeled by the value of the electron energy in MeV. The 16 keV
results have been shifted by 10~1%, and the 1 MeV results have been shifted by
1073,

Figure 11.- Normailized electron flux versus pitch angle for 10.6 MeV at 7. = 7,6 = 5
and a? = co. Curves labeled "U" are for the uniform field cases and curves labeled
"C" are for the ‘long’ convergence cases with S, = 3.7 10~%cm™!. The solid lines
are for the models with R, = 3 x 10~ at the top, and dashed lines are for cases

with R, = 1.3 at the top.

Figure 12.- Normailzed electron flux versus pitch angle for the flare model with 6 = 3.75,
a? = oo, and b = 10. The solid lines are for 7. = 0, and the dashed lines are for

o

1. = n. Each curve is labeled by the value of the electron energy in MeV.
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Figure 13.— Electron flux versus pitch angle for 1 MeV electrons for a model with a
density of Fe ions of 10?7cm~2 and a magnetic field of 10’2 G (or R, = 1.2). The

curves are labeled by the value of 7, = 7,.
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